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Abstract
We give the propagation of extended particles in a generic curved spacetime.
The extended particle may be a scalar system of two quarks viewed as two
quantum modes. Precisely, the first mode represents the global location of the
extended particle in the curved spacetime and is quantized by the geometro-
stochastic method which seems to be well suited for that purpose. The other
mode, which represents a relative motion and is naturally confined in a de Sitter
internal spacetime, is quantized by the method of induced representations. This
corresponds to the relativistic harmonic oscillator in which the interaction has
been replaced by a curvature of the internal space (relativistic rotator). States
of the extended particle are then defined in a Hilbert bundle structure with
the direct product of the external Poincaré and internal de Sitter symmetries
playing the role of the structural group. Intertwining operators are used to define
propagation in one fibre as a transition amplitude between the so-called local
quantum frames. Parallel transport of these frames is used to define the total
propagation of the extended particle as advocated by the geometro-stochastic
theory.

PACS numbers: 02.40.Hw, 11.30.Ly, 11.30.Cp

1. Introduction

The currently accepted conception of hadrons is that they are composed of quarks which are
deemed to be elementary particles on their own. However, the hypothesis of permanent quark
confinement lacks a rigorous proof and opens the way to alternative models. One such model
is the relativistic rotator based on the de Sitter dynamical group and leading to an acceptable
mass–spin relation [1–3]. This model has been related to a de Sitter gauge theory describing
the collective motion of an extended particle with strong interaction [4]. This theory adopted
the idea of a semi-classical geometric model for extended hadrons that attributes the extension
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to geometric features (such as the curvature of the internal de Sitter space) rather than to
the presence of constituents [5–7]. This latter model has been quantized by the geometro-
stochastic method which introduces another extension related to the indivisibility of spacetime
at small orders of magnitude (Planck length for instance) [8, 9].

The main purpose of the present work is to pave the way for the combination of the
geometric ideas which account for confinement with all the experimental success of the quark
model in a curved spacetime context. The construction is quite general and does not pretend
yielding experimentally verifiable results. We shall give the mathematical structure and a
general formula for the propagation of an extended scalar particle viewed as a two-quark
system without specifying the unitary symmetry.

This program began with our proposal of a geometro-differential model in which the
extended particle is composed of an external and an internal quantum mode [10, 11]. The
external mode represents a global (mean) location of the particle in an external spacetime
M with points x and the internal mode plays the role of a constituent located in an internal
de Sitter spacetime V R

4 with points ξ . An analogous image has been considered in studying
the Poincaré group representations of the relativistic harmonic oscillator describing a quark–
antiquark system with a centre-of-mass variable x and a relative motion variable ξ [12]. In
our model, the harmonic oscillator interaction is replaced by the internal curved de Sitter
spacetime so that it meets the relativistic rotator with an interest in the internal local dynamics.
Our first construction was based on the ideas of a quantum functional theory which adopted
a conceptualization of a nonrigid extended body for the particles described by means of a
physical wave u [13, 14]. This physical wave describes all the intrinsic characteristics of
the particle, but does not have a probabilistic interpretation. This latter role is played by the
functional wave X[u, t]. Compared to the conventional quantum mechanics, the functional
theory replaces the point x by a wave u and the wavefunction ψ(x, t) by the functional X[u, t].
In order to treat the abstract function u, one should adopt a realistic model. This choice is
quantum in our case since the functional X[�] = �(x, ξ) is a bilocal field describing the
quantum motion of the external and the internal modes. The quantization of both modes has
been carried out by an induced representation method which is based on the intertwining of
the reducible configuration representation and the irreducible momentum representation with
definite mass and spin [15, 16]. States of the former have been called localized and those
of the latter have been interpreted as real (or material). Intertwining is then interpreted as a
localization, a materialization or propagation of quantum states according to the nature of the
initial and final states. We shall not rely on this interpretation in the present work but use the
inducing method as a mathematical device to obtain the propagator in the internal space. We
shall investigate this interpretation in forthcoming works.

In our previous works, we used a Hilbert bundle over external spacetime in which the
pointlike structure of the external mode was a handicap for the curved external spacetime
propagation. In the present work, we endow this latter mode with a stochastic extension in
accordance with the geometro-stochastic theory to overcome the curved spacetime difficulties.
In fact, the geometro-stochastic quantization provides a unified approach to nonrelativistic,
relativistic and general relativistic quantum theories devoid of the inconsistencies that plague
conventional theories [17, 18]. It is based on the concept of stochastic values of physical
quantities rather than on sharp ones. In other words, when a measurement of a position yields
a value x ∈ R

3 (a sharp deterministic value) it is interpreted as the real position of the particle
in conventional quantum mechanics. In stochastic quantum mechanics the measurement may
yield another value q ∈ R

3 with a confidence function (density of probability) representing the
imperfectness of any apparatus. The mathematical formulation of this idea is based on the use
of positive-operator-valued (POV) measures which take over the role of the projection valued
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(PV) measures in conventional quantum mechanics. In the presence of a group of invariance,
a POV measure leads to the notion of a system of covariance which is the generalization of the
system of imprimitivity for quantum systems [19]. Accordingly, the particles are stochastically
extended and described by means of square integrable functions ψ(q, p) on phase space with
variables (q, p). The functions ψ(q, p) are defined in terms of proper state vectors η̃q,p

describing test particles playing the role of microdetectors in the nonrelativistic case and used
to define local quantum frames in the general relativistic case [18].

The physical justification of the present work is that the external mode experiences direct
measurements and is concerned with the localization problem which seems to be solved by
the geometro-stochastic theory. In contrast and because of confinement, the internal mode
is observed through indirect measurements and its actual position in the internal space is not
crucially relevant.

In section 2, we present a nongeometric but relativistic structure with external Poincaré
and internal de Sitter symmetries. We consider the simplest scalar case and show that the
propagator is a product of the external and internal pointlike propagators when there is no
interaction. In section 3, we define the fibre bundle describing the states of the extended
particle and give the connection representing the interaction. In section 4, we replace the
geometro-stochastic and the induced representation intertwining operators by local ones acting
in a single fibre. Then, the total propagation is defined as a path-integral according to the
geometro-stochastic recipe which uses parallel transport of quantum frames. In section 5, we
give the conclusion.

2. The external and internal spacetime symmetries

The symmetry group of the extended particle is a direct product ISO(3, 1) ⊗ SO(4, 1)

of the external Poincaré group P = ISO(3, 1) and the internal de Sitter group G = SO(4, 1).
The former is composed of spacetime translations a ∈ T and Lorentz transformations l ∈ L.
The de Sitter groupG is defined as the group of transformations g which leave the quadratic
form [ξ, ξ ] invariant in de Sitter space V R

4 (a space of constant curvature R)

V R
4 = {ξ/[ξ, ξ ] = ηa,bξ

aξb = −R2, ηab = diag(+,−,−,−,−)}
a, b = 0, 1, 2, 3, 5.

(1)

To set up the construction, let us consider the Hilbert space L2
(
V +

m × C
)

of square integrable
functions �(k, ζ̃ ε) defined on the external Poincaré momentum space (the forward mass
hyperboloid) and the internal de Sitter momentum space, respectively

V +
m = {k/ηij k

ikj = m2, k0 > 0, ηij = diag(+,−,−,−)}

C =
{
ζ̃ ε/ζ̃ ε =

(
ζ̃ i

−ε

)
, ηij ζ̃

i ζ̃ j = 1, ζ̃ 0 > 0, ε = ±1

}
(2)

i, j = 0, 1, 2, 3.

The spaces, C and V R
4 , can be viewed as homogenous spaces isomorphic to the quotient spaces

of the de Sitter group

C ∼= G/H, V R
4

∼= G/L. (3)

The subgroup H is the little group which leaves the direction (e0 − e5) = (1, 0, 0, 0,−1)t

(t stands for transpose) invariant andL is the internal Lorentz subgroup with elements 	 leaving

the origin
0
ξ = (

0, 0, 0, 0, 1
R

)t
of V R

4 invariant. The points ξ and ζ̃ ε correspond to classes
whose respective representatives are a de Sitter boost ξT and a Lorentz boost ζ̃LIε, where Iε

3
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is a diagonal matrix with elements (1, ε, ε, ε, ε). These representatives can be related through
an internal Lorentz transformation ((ζ̃LIε)

−1, ξ)L [15, 16]

(ζ̃LIε)
−1ξT = ((ζ̃LIε)

−1ξ)T ((ζ̃LIε)
−1, ξ)L. (4)

Now we can define the direct product Ũ
µ
m = Ũm(a, l) ⊗ Ũµ(ξT 	) of the Poincaré and Sitter

group irreducible induced momentum representations Ũm and Ũµ, by its action on the scalar
bilocal field �(k, ζ̃ ε). In the explicit expression of the representation Ũ

µ
m , we shall identify

the function �(k, ζ̃ ε) with the function �(k, ζ̃LIε), where the internal momentum variable ζ̃ ε

is replaced with its representative ζ̃LIε [16]

[Ũµ
m((a, l), ξT 	)�](k, ζ̃LIε) = exp(ıma · k)

[
[ξ, ζ̃ ε]

R

]iµ+ 3
2 {

�
(
l−1k,	−1((ζ̃LIε)

−1, ξ)−1
L

)}
.

(5)

The parameter m stands for the mass of the external mode and µ ∈ R
+ is the parameter

characterizing a unitary irreducible representation of the de Sitter group (an element of the
principal series). For a fixed value of the parameter µ, the relation between the mass m′ of the
internal mode and the radius R is given by [16]

(m′R)2 = µ2 + 1
4 ; h̄ = c = 1. (6)

The localization of the extended particle is dealt with by considering the Hilbert space
L2

(

 × V R

4

)
of functions �(q, p, ξ) defined on the internal de Sitter space V R

4 and an
external phase space hypersurface 
(q, p),


(q, p) = {
(q, p); (q, p) ∈ σ × V +

m

}
, (7)

where σ is a space-like hypersurface in the external Minkowski spacetime M with invariant
measure d
(q, p) = pkdσ kd�(p). The latter equals d3qd3p when σ is a fixed time
hyperplane (q0 = const) [17]. The direct product Û = U ⊗UD of the external Poincaré phase
space representation U(a, l) and the internal de Sitter (induced) configuration representation
UD(g) acts on the states �(q, p, ξ) as follows [16, 17]:

[Û ((a, l), g)�](q, p, ξ) = �(l−1(q − a), l−1p, g−1ξ). (8)

Both representations, U(a, l) and UD(g), are reducible. The irreducible component UDµ of
the de Sitter configuration representation is obtained by means of an intertwining operator
Iµ from the momentum representation Hilbert space Hµ onto the subspace HDµ of the
configuration representation Hilbert space HD . On the other hand, the irreducible component
Ũm of the Poincaré phase space representation is obtained by means of a unitary intertwining
operator Wη from the momentum representation Hilbert space L2

(
V +

m

)
onto the subspace

PηL
2(
) of L2(
). The projection Pη fromL2(
) onto PηL

2(
) can be expressed by means
of the so-called proper state vectors η̃q,p [17]

Pη =
∫




|η̃q,p〉 d
(q, p)〈η̃q,p|. (9)

In the momentum representation, the proper state vectors η̃q,p(k) are obtained from functions
η̃(k) by means of a translation q and a Lorentz boost lp,

η̃q,p(k) = [Ũ (q, lp)η̃](k) = exp(ık · q)η̃
(
l−1
p k

)
. (10)

Now we turn to the free propagation of the extended particle[
Kµ

η �
]
(q, p, ξ) =

∫
d
(q ′, p′) dµ(ξ ′)Kµ

η (q, p, ξ ; q ′, p′, ξ ′)�(q ′, p′, ξ ′). (11)
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The kernel is defined as the transition probability amplitude between the improper state vectors
ηq,p,ξ = η̃q,p ⊗ ψξ , where ψξ(ξ

′) = δ(ξ − ξ ′),

Kµ
η (q, p, ξ ; q ′, p′, ξ ′) = 〈ηq,p,ξ |Kµηq ′,p′,ξ ′ 〉 (12)

Kµ = 1 ⊗ �µ. (13)

Obviously, it is the product

Kµ
η (q, p, ξ ; q ′, p′, ξ ′) = Kη(q, p; q ′, p′)�µ(ξ, ξ ′) (14)

of the stochastic propagator Kη(q, p; q ′, p′) = 〈η̃q,p|η̃q ′,p′ 〉[18] and the internal propagator
�µ(ξ, ξ ′) = 〈ψξ |�µψξ ′ 〉. The operator �µ is a composition of the intertwining operators Iµ

and Jµ[16]

�µ = IµJµ, (15)

where Iµ has been defined above and Jµ maps the reducible configuration representation
Hilbert space HD onto the irreducible momentum representation Hilbert space Hµ. The
internal causal propagator �

cµ
x (ξ, ξ ′) is obtained by considering the propagation of the previous

mode forward in time and the propagation of the antimode backward in time

�cµ
x (ξ, ξ ′) = θ(ξ 0 − ξ ′0)�µ+(ξ, ξ ′) + θ(ξ ′0 − ξ 0)�µ−(ξ, ξ ′). (16)

The superscripts (+) and (−) in �µ refer to the mode and antimode, respectively. To avoid
repetitions, we shall give the explicit forms of Wη, I

µ, Jµ,Kη and �µc in section 4, where we
consider the propagation of the extended particle in a fibre bundle geometric structure.

3. The fibre bundles and the connection

We now proceed with the construction of a geometro-differential model for an extended
particle composed of an external stochastic quantum mode with a Poincaré symmetry and an
internal pointlike quantum mode with a de Sitter symmetry. Two fibre bundles are needed,
namely, the momentum fibre bundle E

µ
m and the configuration fibre bundle E. Let us begin by

introducing the momentum fibre bundle E
µ
m,

Eµ
m

(
M,L2

(
V +

m × C
)
, Ũµ

m

)
. (17)

The base manifold is a curved spacetime M. The typical fibre is the momentum Hilbert
space L2

(
V +

m × C
)

of functions �̃x(k, ζ̃LIε) defined on the external Poincaré momentum
space and the internal de Sitter momentum space, respectively. The structural group
Ũ

µ
m = Ũm(a, l) ⊗ Ũµ(ξT 	) acts on the states �̃x(k, ζ̃LIε) belonging to the fibre above a

base manifold point x as defined in the previous section

[
Ũµ

m�̃x

]
(k, ζ̃LIε) =

[
[ξ, ζ̃ ε]

R

]iµ+ 3
2

exp ım(a · k)
{
�̃x

(
l−1k,	−1((ζ̃LIε)

−1, ξ)−1
L

)}
. (18)

The physical interpretation of the states �̃x(k, ζ̃LIε) is that they give the probability amplitude
that the external and internal modes have the respective momenta k and ζ̃ when the extended
particle is localized at the mean stochastic point x of the external curved spacetime, in
agreement with the stochastic theory. The inner product is given by

〈�̃x |�̃′
x〉 =

∫
V +

m,C

d�(k) d�(ζ̃ )�̃∗
x(k, ζ̃LIε)�̃

′
x(k, ζ̃LIε)

d�(k) = d3k
2k0

, d�(ζ̃ ) = δ([ζ̃ , ζ̃ ]) d4ζ̃ .

(19)

5
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The next geometric structure we need is the configuration fibre bundle

E(M,L2
(

 × V R

4

)
, Û ) (20)

whose base manifold is M and the typical fibre is the Hilbert space L2
(

 × V R

4

)
carrying

the external Poincaré group phase space representation and the internal de Sitter group
configuration representation. The direct product representation Û = U(a, l) ⊗ UD(g),

(Û�x)(q, p, ξ) = �x(l
−1(q − a), l−1p, g−1ξ) (21)

constitutes the structural group. The inner product is

〈�x |� ′
x〉 =

∫

,V R

4

d
(q, p) dµ(ξ)�∗
x (q, p, ξ)� ′

x(q, p, ξ). (22)

The physical interpretation of the states �x(q, p, ξ) is rather difficult since it involves a four-
dimensional integration with respect to the internal variable (dµ(ξ) = δ([ξ, ξ ] + R2) d5ξ).
In fact, only the external part has a stochastic probabilistic interpretation for wavefunctions
belonging to the irreducible component (Pη ⊗ 1)L2

(

 × V R

4

)
of the external phase space

representation. It corresponds to the probability of observing the fluctuations (q, p) around
the mean value x [17, 18].

A classical interaction is taken into account by introducing a connection on the fibre
bundle structure

�T (x) = �(x) + �R(x). (23)

The total connection �T (x) is a sum of the external Poincaré connection �(x),

�(x) = dxµθµk(I
k ⊗ 1) + 1

2 dxµ�µkl(x)(I kl ⊗ 1) (24)

and the internal de Sitter connection �R(x),

�R(x) = 1
2 dxµ�R

µab(x)(1 ⊗ I ab). (25)

The generators I kl of the Poincaré group can have the following form in the phase space
representation [20]:

Ik = Pk = ı∂/∂qk

Ikl = Mkl = (QkPl − QlPk)

Qk = qk − ı∂/∂pk.

(26)

The corresponding generators of de Sitter group are written in the configuration representation
[8]

Iab = i

(
ξa

∂

∂ξb
− ξb

∂

∂ξa

)
. (27)

The connection coefficient �µkl(x) plays the role of an external gravitational field while
the coefficient �R

µab(x) plays the role of an internal de Sitter gauge filed describing strong
interactions between hadrons.

4. Propagation of the extended particle in a curved spacetime

The induced representation method determines the propagation of a pointlike particle by
means of intertwining operators. It turns out that the generalization of these mappings
to the extended particle is possible. To do so, let us consider first the mapping of states

6
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�̃x(k, ζ̃LIε) ∈ L2
(
V +

m × C
)

into states �x(q, p, ξ) ∈ (PηL
2(
) ⊗ HDµ) ⊂ L2

(

 × V R

4

)
realized by means of the local intertwining operator I

µ
x,η = Wx,η ⊗ I

µ
x ,

Iµ
x,η : L2

(
V +

m × C
) → (PηL

2(
) ⊗ HDµ) ⊂ L2
(

 × V R

4

)
�̃x(k, ζ̃LIε) 
−→ [

Iµ
x,η�̃x

]
(q, p, ξ)

(28)

the mappings Wx,η and I
µ
x are integral transformations (see [18] and [16]) such that the operator

I
µ
x,η takes the following form (I 0 is a constant):[
Iµ
x,η�̃x

]
(q, p, ξ) = 1

(2π)
3
2

∫
V +

m,C

d�(k) d�(ζ̃ ) exp[−ım(k.q)]

× η(k.p)

[
[ξ, ζ̃ ε]

R
− i0

]−iµ− 3
2

I 0�̃x(k, ζ̃LIε). (29)

The inverse mapping is realized by means of the local operator J
µ
x,η = W−1

x,η ⊗ J
µ
x ,

Jµ
x,η : PηL

2(
 × V R
4

) → L2(V +
m × C

)
�x(q, p, ξ) 
−→ [Jµ

x,η�x](k, ζ̃LIε) ≡ �̃x(k, ζ̃LIε)
(30)

which has the following integral form (J 0 is a constant):

�̃x(k, ζ̃LIε) = 1

(2π)
3
2

∫

,V R

4

d
(q, p) dµ(ξ) exp[ım(k.q)]

× η(k.p)

[
[ξ, ζ̃ ε]

R
+ i0

]iµ− 3
2

J 0�x(q, p, ξ). (31)

The operator K
µ
x,η = I

µ
x,ηJ

µ
x,η = 1 ⊗ �

µ
x ,

Kµ
x,η : PηL

2
(

 × V R

4

) → PηL
2(
) ⊗ HDµ

�x(q
′, p′, ξ ′) 
−→ [

Kµ
x,η�x

]
(q, p, ξ)

(32)

corresponds to a propagation[
Kµ

x,η�x

]
(q, p, ξ) =

∫
d
(q ′, p′) dµ(ξ ′)Kµ

x,η(q, p, ξ ; q ′, p′, ξ ′)�x(q
′, p′, ξ ′) (33)

in both the tangent phase space and the internal de Sitter space over the curved space point
x. For the construction of the propagator in curved spacetime, we just follow the geometro-
stochastic theory. In fact, the set of all the improper state vectors ηq,p,ξ constitutes a local
quantum frame [18] and the above propagation can be defined by

Kµ
x,η(q, p, ξ ; q ′, p′, ξ ′) = 〈ηx,q,p,ξ |Kµ

x ηx,q ′,p′,ξ ′ 〉. (34)

With the connection introduced in the previous section, we define a semi-classical propagator
Kµ

γ as being the local free propagator K
µ
x between the state vector ηx,q,p,ξ and the parallel

transported state vector τ(γ )ηx ′,q ′,p′,ξ ′ along any curve γ in M,

Kµ
γη(x, q, p, ξ ; x ′, q ′, p′, ξ ′) = 〈ηx,q,p,ξ |Kµ

x τ(γ )ηx ′,q ′,p′,ξ ′ 〉. (35)

In the scalar case, the parallel transport affects only the variables (q ′, p′) and ξ ′ by path ordered
elements of the Poincaré and de Sitter groups, respectively [10, 11]

Kµ
γη(x, q, p, ξ ; x, q ′, p′, ξ ′) = Kη(q, p; g(�)q ′, g(�)p′)�µc(ξ, g(�R)ξ ′)

g(�) = P

(
exp

(
−i

∫
γ

�(x)

))
∈ ISO(3, 1) (36)

g(�R) = P

(
exp

(
−i

∫
γ

�R(x)

))
∈ SO(4, 1).

7
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The symbol P means path ordering and the connections should be taken in the matrix
representations of the variables they act on.

Then, we consider a foliation of the curved spacetime with space-like hypersurfaces
σ(tn), where x ′ = x0 ∈ σ(t0), x = xN ∈ σ(tN) and n = 0, 1, . . . , N . For each point xn−1, we
impose that xn belongs to the intersection between σ(tn), the causal future of xn−1, and the
causal past of the endpoint x = xN . We also define the average propagator Kµ

η (Xn,Xn−1),
with Xn = (xn, qn, pn, ξn), as the propagator Kµ

γη(Xn,Xn−1) divided by the area of that
intersection. The total propagator is the limit [18]

K(x, q, p, ξ ; x ′, q ′, p′, ξ ′) = lim
ε→0

∫
Kµ

η (XN,XN−1)

×
1∏

n=N−1

dσ(xn) d
(qn, pn) dµ(ξn)K
µ
η (Xn,Xn−1), (37)

where ε = max(tn − tn−1). This propagator reduces to the product

Kµ
x,η(q, p, ξ ; q ′, p′, ξ ′) = Kx,η(q, p; q ′, p′)�cµ

x (ξ, ξ ′) (38)

of the external propagator

Kx,η(q, p; q ′, p′) =
∫

V +
m

d�(k)η̃∗
q,p(k)η̃q ′,p′(k) (39)

and the internal causal propagator �
cµ
x (ξ, ξ ′),

�cµ
x (ξ − ξ ′) = θ(ξ 0 − ξ ′0)�µ+

x (ξ − ξ ′) + θ(ξ ′0 − ξ 0)�µ−
x (ξ − ξ ′) (40)

�µ±
x (ξ − ξ ′) =

∑
ε

I 0±J 0±
∫

C

d�(ζ̃ )

{[
[ξ, ζ̃ ε]

R
∓ i0

]−iµ− 3
2
[

[ξ ′, ζ̃ ε]

R
± i0

]iµ− 3
2
}

(41)

when the external base manifold M is a flat Minkowski spacetime identified with all its tangent
spaces (q variable) and parallel transport becomes path independent.

5. Conclusion

By adopting a geometro-stochastic description of the external mode, we have been able
to construct a consistent model of scalar extended particles moving in a curved spacetime
reflecting the presence of a classical gravitational field. The internal degrees of freedom
are described by the internal local quantum mode moving in a de Sitter spacetime. Strong
interactions between extended particles correspond to a gauge theory of the internal de Sitter
symmetry while the gravitational interaction corresponds to the external Poincaré symmetry.
The quantization of the internal mode has been carried out by the method of induced
representations with local intertwining operators yielding an internal propagation as far as
the fibre over the same external spacetime point x is concerned. The propagation between
two different external spacetime points has been achieved by use of quantum frame elements
ηx,q,p,ξ which enable the definition of a quantum parallel transport.

In order to arrive at concrete applications of the present work, one can first test the basic
idea of adopting a stochastic representation for the external mode and a pointlike representation
for the internal mode in the nonrelativistic regime. We have obtained acceptable probability
interpretation in that (nongeometrical) case, albeit in a general formulation [21].

One can also focus interest in the internal de Sitter space and specify the unitary
symmetries, including the gauged colour symmetry acting in there. This is expected to
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give good results when combined with the dynamical de Sitter group. Since we are not
well acquainted with unitary symmetries, we plan such applications at the latest stage of our
program.

As to the propagation, one should choose a specific curved spacetime with its Poincaré
connection, but much more difficult is the determination of the de Sitter connection. The latter
may be deduced from a set of Einstein-like and Yang–Mills-like field equations derived from
the fibre bundle structure in a nonlinear representation of the de Sitter symmetry, in addition to
a wave equation for a symmetry breaking field [7, 9, 11] (see [4] for a study in the relativistic
rotator context).

The present work suffers from two weak points. First, the inner product in the internal
space is defined with a time integration whose probabilistic interpretation is doubtful but
may be avoided by a transition to a second quantization. This kind of integration has been
used in the relativistic harmonic oscillator model [12]. The second weak point may arise
when considering the nonlinear representation of the de Sitter symmetry whose breaking
has previously been identified with gravitation. It is clear from the present formulation that
gravitation (external Poincaré symmetry) and strong interaction (internal de Sitter symmetry)
have been distinguished from the outset. These two questions will be addressed in forthcoming
works. Particles with spinorial internal modes (such as quarks) will be considered.

References
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[13] Destouches J 1958 La Quantification en Théorie Fonctionnelle des Corpuscules (Paris: Gauthier-Villars)
[14] Destouches J 1958 Corpuscules et Champs en Théorie Fonctionnelle (Paris: Gauthier-Villars)
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